published in: Econometrics Journal, 2022, 25 (3), 602-627
This paper consolidates recent methodological developments based on Double Machine Learning (DML) with a focus on program evaluation under unconfoundedness. DML based methods leverage flexible prediction methods to control for confounding in the estimation of (i) standard average effects, (ii) different forms of heterogeneous effects, and (iii) optimal treatment assignment rules. We emphasize that these estimators build all on the same doubly robust score, which allows to utilize computational synergies. An evaluation of multiple programs of the Swiss Active Labor Market Policy shows how DML based methods enable a comprehensive policy analysis. However, we find evidence that estimates of individualized heterogeneous effects can become unstable.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.