published as 'Numerical representability or ordered topological spaces with compatible algebraic structure' in: Order, 2012, 29, 131-146
It is shown that any completely preordered topological real algebra admits a continuous utility representation which is an algebra-homomorphism (i.e., it is linear and multiplicative). As an application of this result, we provide an algebraic characterization of the projective (dictatorial) preorders defined on Rⁿ. We then establish some welfare implications derived from our main result. In particular, the connection with the normative property called independence of the relative utility pace is discussed.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.