Macroeconomists have long been concerned with the causal effects of monetary policy. When the identification of causal effects is based on a selection-on-observables assumption, non-causality amounts to the conditional independence of outcomes and policy changes. This paper develops a semiparametric test for conditional independence in time series models linking a multinomial policy variable with unobserved potential outcomes. Our approach to conditional independence testing is motivated by earlier parametric tests, as in Romer and Romer (1989, 1994, 2004). The procedure developed here is semiparametric in the sense that we model the process determining the distribution of treatment – the policy propensity score – but leave the model for outcomes unspecified. A conceptual innovation is that we adapt the cross-sectional potential outcomes framework to a time series setting. This leads to a generalized definition of Sims (1980) causality. A technical contribution is the development of root-T consistent distribution-free inference methods for full conditional independence testing, appropriate for dependent data and allowing for first-step estimation of the propensity score.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.