published in: Information and Inference: A Journal of the Institute of Mathematics and its Applications, 2019, 8(4), 677–689..
In this paper, we address the problem of estimating transport surplus (a.k.a. matching affinity) in high dimensional optimal transport problems. Classical optimal transport theory species the matching affinity and determines the optimal joint distribution. In contrast, we study the inverse problem of estimating matching affinity based on the observation of the joint distribution, using an entropic regularization of the problem. To accommodate high dimensionality of the data, we propose a novel method that incorporates a nuclear norm regularization which effectively enforces a rank constraint on the affinity matrix. The lowrank matrix estimated in this way reveals the main factors which are relevant for matching.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.