We study response behavior in surveys and show how the explanatory power of self-reports can be improved. First, we develop a choice model of survey response behavior under the assumption that the respondent has imperfect self-knowledge about her individual characteristics. In panel data, the model predicts that the variance in responses for different characteristics increases in self-knowledge and that the variance for a given characteristic over time is non-monotonic in self-knowledge. Importantly, the ratio of these variances identifies an individual's level of self-knowledge, i.e., the latter can be inferred from observed response patterns. Second, we develop a consistent and unbiased estimator for self-knowledge based on the model. Third, we run an experiment to test the model's main predictions in a context where the researcher knows the true underlying characteristics.
The data confirm the model's predictions as well as the estimator's validity. Finally, we turn to a large panel data set, estimate individual levels of self-knowledge, and show that accounting for differences in self-knowledge significantly increases the explanatory power of regression models. Using a median split in self-knowledge and regressing risky behaviors on self-reported risk attitudes, we find that the R2 can be multiple times larger for above- than below-median subjects. Similarly, gender differences in risk attitudes are considerably larger when restricting samples to subjects with high self-knowledge. These examples illustrate how using the estimator may improve inference from survey data.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.