published in: Evaluation Review, 2009, 33 (4), 335-357
In experimental designs with nested structures entire groups (such as schools) are often assigned to treatment conditions. Key aspects of the design in these cluster randomized experiments include knowledge of the intraclass correlation structure and the sample sizes necessary to achieve adequate power to detect the treatment effect. However, the units at each level of the hierarchy have a cost associated with them and thus researchers need to decide on sample sizes given a certain budget, when designing their studies. This paper provides methods for computing power within an optimal design framework (that incorporates costs of units in all three levels) for three-level cluster randomized balanced designs with two levels of nesting. The optimal sample sizes are a function of the variances at each level and the cost of each unit. Overall, larger effect sizes, smaller intraclass correlations at the second and third level, and lower cost of level-3 and level-2 units result in higher estimates of power.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.