published in: Journal of Statistical Planning and Inference, 2010, 140 (7), 2122-2137
In this paper we perform inference on the effect of a treatment on survival times in studies where the treatment assignment is not randomized and the assignment time is not known in advance. Two such studies are discussed: a heart transplant program and a study of Swedish unemployed eligible for employment subsidy. We estimate survival functions on a treated and a control group which are made comparable through matching on observed covariates. The inference is performed by conditioning on waiting time to treatment, that is time between the entrance in the study and treatment. This can be done only when sufficient data is available. In other cases, averaging over waiting times is a possibility, although the classical interpretation of the estimated survival functions is lost unless hazards are not functions of waiting time. To show unbiasedness and to obtain an estimator of the variance, we build on the potential outcome framework, which was introduced by J. Neyman in the context of randomized experiments, and adapted to observational studies by D. B. Rubin. Our approach does not make parametric or distributional assumptions. In particular, we do not assume proportionality of the hazards compared. Small sample performance of the estimator and a derived test of no treatment effect are studied in a Monte Carlo study.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.