In this paper we investigate how heterogeneous agents choose among tournaments with different prizes. We show that if the number of agents is sufficiently small, multiple equilibria can arise. Depending on how the prize money is split over the tournaments, these may include, for example, a perfect-sorting equilibrium in which high-ability agents compete in the high-prize tournament, while low-ability agents compete for the low prize. However, there are also equilibria in which agents follow a mixed strategy and there can be reverse sorting, i.e. low-ability agents are in the tournament with the high prize, while high-ability agents are in the low-prize tournament. We show that total effort always decreases compared to a single tournament. However, splitting the tournament may increase the effort of low-ability agents.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.