published in: Economics of Education Review, 2017, 61, 51-58
International large-scale assessments such as PISA are increasingly being used to benchmark the academic performance of young people across the world. Yet many of the technicalities underpinning these datasets are misunderstood by applied researchers, who sometimes fail to take their complex sample and test designs into account. The aim of this paper is to generate a better understanding amongst economists about how such databases are created, and what this implies for the empirical methodologies one should (or should not) apply.
We explain how some of the modelling strategies preferred by economists seem to be at odds with the complex test design, and provide clear advice on the types of robustness tests that are therefore needed when analyzing these datasets. In doing so, we hope to generate a better understanding of international large-scale education databases, and promote better practice in their use.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.