published in: Stata Journal, 2020, 13 (4), 812-843
When considering multiple hypothesis tests simultaneously, standard statistical techniques will lead to over-rejection of null hypotheses unless the multiplicity of the testing framework is explicitly considered. In this paper we discuss the Romano-Wolf multiple hypothesis correction, and document its implementation in Stata. The Romano-Wolf correction (asymptotically) controls the familywise error rate (FWER), that is, the probability of rejecting at least one true null hypothesis in a family of hypotheses under test.
This correction is considerably more powerful than earlier multiple testing procedures such as the Bonferroni and Holm corrections, given that it takes into account the dependence structure of the test statistics by resampling from the original data. We describe a Stata command rwolf that implements this correction, and provide a number of examples based on a wide range of models. We document and discuss the performance gains from using rwolf over other multiple correction procedures that control the FWER.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.