We investigate heterogenous employment effects of Flemish training programmes. Based on administrative individual data, we analyse programme effects at various aggregation levels using Modified Causal Forests (MCF), a causal machine learning estimator for multiple programmes. While all programmes have positive effects after the lock-in period, we find substantial heterogeneity across programmes and types of unemployed. Simulations show that assigning unemployed to programmes that maximise individual gains as identified in our estimation can considerably improve effectiveness. Simplified rules, such as one giving priority to unemployed with low employability, mostly recent migrants, lead to about half of the gains obtained by more sophisticated rules.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.