Matching has become a popular approach to estimate average treatment effects. It is based on the conditional independence or unconfoundedness assumption. Checking the sensitivity of the estimated results with respect to deviations from this identifying assumption has become an increasingly important topic in the applied evaluation literature. If there are unobserved variables which affect assignment into treatment and the outcome variable simultaneously, a hidden bias might arise to which matching estimators are not robust. We address this problem with the bounding approach proposed by Rosenbaum (2002), where mhbounds allows the researcher to determine how strongly an unmeasured variable must influence the selection process in order to undermine the implications of the matching analysis.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.