revised version published in: Journal of Development Studies, 2009, 45 (9), 1-38
This study aimed to identify the major factors underlying the large discrepancy in poverty levels between two Brazilian racial groups: whites and Afro-Brazilians. We performed an Oaxaca-Blinder-type decomposition for nonlinear regressions in order to quantify the extent to which differences in observed geographic, sociodemographic, and labor characteristics (characteristics effect) account for this difference. The remaining unexplained part (coefficients effect) provides evidence on how these characteristics differentially impact on the risk of poverty in each group. A detailed decomposition of both effects allows the individual contribution of each characteristic to be determined. Our results show that the characteristics effect explains a large part of the discrepancy in poverty levels, with education and labor variables of household members explaining at least one half of the effect, and geographic and demographic variables accounting for the remainder. However, the unexplained part that remains significant has increased in importance in recent last years, and probably results from unequal access to high-quality education and the persistence of discrimination against colored workers in the labor market.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.