published in: Labour Economics, 2010, 17 (1), 284-290
We analyze four methods to measure unexplained gaps in mean outcomes: three decompositions based on the seminal work of Oaxaca (1973) and Blinder (1973) and an approach involving a seemingly naïve regression that includes a group indicator variable. Our analysis yields two principal findings. We show that the coefficient on a group indicator variable from an OLS regression is an attractive approach for obtaining a single measure of the unexplained gap. We also show that a commonly-used pooling decomposition systematically overstates the contribution of observable characteristics to mean outcome differences when compared to OLS regression, therefore understating unexplained differences. We then provide three empirical examples that explore the practical importance of our analytic results.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.