revised version published as 'Comparing Treatments across Labor Markets: An Assessment of Nonexperimental Multiple-Treatment Strategies' in: Review of Economics and Statistics, 2013, 95(5), 1691-1707
This paper assesses the effectiveness of unconfoundedness-based estimators of mean effects for multiple or multivalued treatments in eliminating biases arising from nonrandom treatment assignment. We evaluate these multiple treatment estimators by simultaneously equalizing average outcomes among several control groups from a randomized experiment. We study linear regression estimators as well as partial mean and weighting estimators based on the generalized propensity score (GPS). We also study the use of the GPS in assessing the comparability of individuals among the different treatment groups, and propose a strategy to determine the overlap or common support region that is less stringent than those previously used in the literature. Our results show that in the multiple treatment setting there may be treatment groups for which it is extremely difficult to find valid comparison groups, and that the GPS plays a significant role in identifying those groups. In such situations, the estimators we consider perform poorly. However, their performance improves considerably once attention is restricted to those treatment groups with adequate overlap quality, with difference-in-difference estimators performing the best. Our results suggest that unconfoundedness-based estimators are a valuable econometric tool for evaluating multiple treatments, as long as the overlap quality is satisfactory.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.