published as 'Testing for the Unconfoundedness Assumption Using an Instrumental Assumption' in: Journal of Causal Inference, 2014, 2, 187-199
The identification of average causal effects of a treatment in observational studies is typically based either on the unconfoundedness assumption or on the availability of an instrument. When available, instruments may also be used to test for the unconfoundedness assumption (exogeneity of the treatment). In this paper, we define variables which we call quasi-instruments because they allow us to test for the unconfoundedness assumption although they do not necessarily yield nonparametric identification of the average causal effect. A quasi-instrument is defined as an instrument except for that its relation to the treatment is allowed to be confounded by unobservables, thereby resulting in a wider range of potential applications. We propose a test for the unconfoundedness assumption based on a quasi-instrument, and give conditions under which the test has power. We perform a simulation study and apply the results to a case study where the interest lies in evaluating the effect of job practice on employment.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.