This article develops a Bayesian approach for estimating panel quantile regression with binary outcomes in the presence of correlated random effects. We construct a working likelihood using an asymmetric Laplace (AL) error distribution and combine it with suitable prior distributions to obtain the complete joint posterior distribution. For posterior inference, we propose two Markov chain Monte Carlo (MCMC) algorithms but prefer the algorithm that exploits the blocking procedure to produce lower autocorrelation in the MCMC draws. We also explain how to use the MCMC draws to calculate the marginal effects, relative risk and odds ratio.
The performance of our preferred algorithm is demonstrated in multiple simulation studies and shown to perform extremely well. Furthermore, we implement the proposed framework to study crime recidivism in Quebec, a Canadian Province, using a novel data from the administrative correctional files. Our results suggest that the recently implemented "tough-on-crime" policy of the Canadian government has been largely successful in reducing the probability of repeat offenses in the post-policy period. Besides, our results support existing findings on crime recidivism and offer new insights at various quantiles.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.