We propose a new model-selection algorithm for Regression Discontinuity Design, Regression Kink Design, and related IV estimators. Candidate models are assessed within a 'placebo zone' of the running variable, where the true effects are known to be zero. The approach yields an optimal combination of bandwidth, polynomial, and any other choice parameters. It can also inform choices between classes of models (e.g. RDD versus cohort-IV) and any other choices, such as covariates, kernel, or other weights. We use the approach to evaluate changes in Minimum Supervised Driving Hours in the Australian state of New South Wales. We also re-evaluate evidence on the effects of Head Start and Minimum Legal Drinking Age. We conclude with practical advice for researchers, including implications of treatment effect heterogeneity.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.