The outbreak of COVID-19 in 2020 inhibited face-to-face education and constrained exam taking. In many countries worldwide, high-stakes exams happening at the end of the school year determine college admissions. This paper investigates the impact of using historical data of school and high-stakes exams results to train a model to predict high-stakes exams given the available data in the Spring. The most transparent and accurate model turns out to be a linear regression model with high school GPA as the main predictor. Further analysis of the predictions reflect how high-stakes exams relate to GPA in high school for different subgroups in the population.
Predicted scores slightly advantage females and low SES individuals, who perform relatively worse in high-stakes exams than in high school. Our preferred model accounts for about 50% of the out-of- sample variation in the high-stakes exam. On average, the student rank using predicted scores differs from the actual rank by almost 17 percentiles. This suggests that either high-stakes exams capture individual skills that are not measured by high school grades or that high-stakes exams are a noisy measure of the same skill.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.