Academia, and economics in particular, faces increased scrutiny because of gender imbalance. This paper studies the job market for entry-level faculty positions. We employ machine learning methods to analyze gendered patterns in the text of 9,000 reference letters written in support of 2,800 candidates. Using both supervised and unsupervised techniques, we document widespread differences in the attributes emphasized. Women are systematically more likely to be described using "grindstone" terms and at times less likely to be praised for their ability. Given the time and effort letter writers devote to supporting their students, this gender stereotyping is likely due to unconscious biases.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.