Discrete choice experiments (DCEs) often present concise choice scenarios that may appear incomplete to respondents. To allow respondents to express uncertainty arising from this incompleteness, DCEs may ask them to state probabilities with which they expect to make specific choices. The workhorse method for analyzing the elicited probabilities involves semi-parametric estimation of population average preferences. Despite flexible distributional assumptions, this method presents challenges in estimating unobserved preference heterogeneity, a key element in non-market valuation studies. We introduce a fractional response model based on a mixture of beta distributions.
The model enables researchers to uncover preference heterogeneity under comparable parametric assumptions as adopted in conventional choice analysis, and can accommodate multiplicative forms of heterogeneity that make the semi-parametric method inconsistent. Using a DCE on alternative fuel vehicles, we illustrate the complementary roles of the parametric and semi-parametric approaches. We also undertake a separate analysis in which respondents are randomized to either a DCE employing a conventional choice elicitation format or a parallel DCE employing the probability elicitation format.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.