The analysis of economic loss attributed to the shadow economy has attracted much attention in recent years by both academics and policy makers. Often, multiple indicators multiple causes (MIMIC) models are applied to time series data estimating the size and development of the shadow economy for a particular country. This type of model derives information about the relationship between cause and indicator variables and a latent variable, here the shadow economy, from covariance structures. As most macroeconomic variables do not satisfy stationarity, long run information is lost when employing first differences. Arguably, this shortcoming is rooted in the lack of an appropriate MIMIC model which considers cointegration among variables. This paper develops a MIMIC model which estimates the cointegration equilibrium relationship and the error correction short run dynamics, thereby retaining information for the long run. Using France as our example, we demonstrate that this approach allows researchers to obtain more accurate estimates about the size and development of the shadow economy.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.