The linear IV estimator, in which the dependent variable is a linear function of a potentially endogenous regressor, is a major workhorse in empirical economics. When this regressor takes on multiple values, the linear specification restricts the marginal effects to be constant across all margins. This paper investigates the problems caused by the linearity restriction in IV estimation, and discusses possible remedies. We first examine the biases due to nonlinearity in the commonly used tests for non-zero treatment effects, selection bias, and instrument validity. Next, we consider three applications where theory suggests a nonlinear relationship, yet previous research has used linear IV estimators. We find that relaxing the linearity restriction in the IV estimation changes the qualitative conclusions about the relevant economic theory and the effectiveness of different policies.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.