Based on new, exceptionally informative and large German linked employer-employee administrative data, we investigate the question whether the omission of important control variables in matching estimation leads to biased impact estimates of typical active labour market programs for the unemployed. Such biases would lead to false policy conclusions about the cost-effectiveness of these expensive policies. Using newly developed Empirical Monte Carlo Study methods, we find that besides standard personal characteristics, information on individual health and firm characteristics of the last employer are particularly important for selection correction. Moreover, it is important to account for past performance on the labour market in a very detailed and flexible way. Information on job search behaviour, timing of unemployment and program start, as well as detailed regional characteristics are also relevant.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.