The delta method is commonly used to calculate confidence intervals of functions of estimated parameters that are differentiable with non-zero, bounded derivatives. When the delta method is inappropriate, researchers usually first use a bootstrap procedure where they i) repeatedly take a draw from the asymptotic distribution of the parameter values and ii) calculate the function value for this draw. They then trim the bottom and top of the distribution of function values to obtain their confidence interval. This note first provides several examples where this procedure and/or delta method fail to provide an appropriate confidence interval. It next presents a method that is appropriate for constructing confidence intervals for functions that are discontinuous or are continuous but have zero or unbounded derivatives. In particular the coverage probabilities for our method converge uniformly to their nominal values, which is not necessarily true for the other methods discussed above.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.