We examine rational learning among expert chess players and how they update their beliefs in repeated games with the same opponent. We present a model that explains how equilibrium play is affected when players change their choice of strategy when receiving additional information from each encounter. We employ a large international panel dataset with controls for risk preferences and playing skills whereby the latter accounts for ability. Although expert chess players are intelligent, productive and equipped with adequate data and specialized computer programs, we find large learning effects. Moreover, as predicted by the model, risk-averse players learn substantially faster.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.