Program evaluations often focus on average treatment effects. However, average treatment effects miss important aspects of policy evaluation, such as the impact on inequality and whether treatment harms some individuals. A growing literature develops methods to evaluate such issues by examining the distributional impacts of programs and policies. This toolkit reviews methods to do so, focusing on their application to randomized control trials. The paper emphasizes two strands of the literature: estimation of impacts on outcome distributions and estimation of the distribution of treatment impacts.
The article then discusses extensions to conditional treatment effect heterogeneity, that is, to analyses of how treatment impacts vary with observed characteristics. The paper offers advice on inference, testing, and power calculations, which are important when implementing distributional analyses in practice. Finally, the paper illustrates select methods using data from two randomized evaluations.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.