Identifying at-risk populations is essential for designing effective energy poverty interventions. Using data from the HILDA Survey, a longitudinal dataset representative of the Australian population, and a multidimensional index of energy poverty, we develop a machine learning model combined with SHAP (SHapley Additive exPlanations) values to document the short- and long-term effects of individual and contextual factors—such as income, energy prices, and regional conditions—on future energy poverty outcomes. The findings emphasize the importance of policies focused on income stability and may be used to shift the policy focus from reactive measures, which address existing poverty, to preventive strategies that target households showing early signs of vulnerability.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.