We build on Rosenzweig and Wolpin (2000) and Keane (2010) and show that in order to fulfill the Instrumental variable (IV) identifying moment condition, a policy must be designed so that compliers and non-compliers either have the same average error term, or have an error term ratio equal to their relative share of the population. The former condition (labeled Choice Orthogonality) is essentially a no-selection condition. The latter one, referred to as Weighted Opposite Choices, may be viewed as a distributional (functional form) assumption necessary to match the degree of selectivity between compliers and noncompliers to their relative population proportions. Those conditions form a core of implicit IV assumptions that are present in any empirical applications. They allow the econometrician to gain substantial insight about the validity of a specific instrument, and they illustrate the link between identification and the statistical strength of an instrument. Finally, our characterization may also help designing a policy generating a valid instrument.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.