published in: Journal of the Royal Statistical Society, 2017, 79 (5), 1645 - 1666
This paper discusses the nonparametric identification of causal direct and indirect effects of a binary treatment based on instrumental variables. We identify the indirect effect, which operates through a mediator (i.e. intermediate variable) that is situated on the causal path between the treatment and the outcome, as well as the unmediated direct effect of the treatment using distinct instruments for the endogenous treatment and the endogenous mediator. We examine different settings to obtain nonparametric identification of (natural) direct and indirect as well as controlled direct effects for continuous and discrete mediators and continuous and discrete instruments. We illustrate our approach in two applications: to disentangle the effects (i) of education on health, which may be mediated by income, and (ii) of the Job Corps training program, which may affect earnings indirectly via working longer hours and directly via higher wages per hour.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.