At the firm level, revenue and costs are well measured but prices and quantities are not. This paper shows that because of these data limitations estimates of returns to scale at the firm level are for the revenue function, not production function. Given this observation, the paper argues that, under weak assumptions, micro-level estimates of returns to scale are often inconsistent with profit maximization or imply implausibly large profits. The puzzle arises because popular estimators ignore heterogeneity and endogeneity in factor/product prices, assume perfect elasticity of factor supply curves or neglect the restrictions imposed by profit maximization (cost minimization) so that estimators are inconsistent or poorly identified. The paper argues that simple structural estimators can address these problems. Specifically, the paper proposes a full-information estimator that models the cost and the revenue functions simultaneously and accounts for unobserved heterogeneity in productivity and factor prices symmetrically. The strength of the proposed estimator is illustrated by Monte Carlo simulations and an empirical application. Finally, the paper discusses a number of implications of estimating revenue functions rather than production functions and demonstrates that the profit share in revenue is a robust non-parametric economic diagnostic for estimates of returns to scale.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.