This paper develops and implements a new benchmarking approach for labor market regions. Based on panel data for regions, we use nonparametric matching techniques to account for observed labor market characteristics and for spatial proximity. As the benchmark, we estimate the counterfactual distribution of labor market outcomes for a region based on outcomes of similar regions. This allows to measure both the rank (relative performance) and the absolute performance based on the actual outcome for a region. Our outcome variable of interest is the hiring rate among the unemployed. We implement different similarity measures to account for differences in labor market conditions and spatial proximity, and we choose the tuning parameters in our matching approach based on a cross-validation procedure. The results show that both observed labor market characteristics and spatial proximity are important features to successfully match regions. Specifically, the modified Zhao (2004) distance measure and geographic distance in logs work best in our applications. Our estimated performance measures remain quite stable over time.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.