published in: Journal of Applied Econometrics, 2017, 32 (4), 725-743
With the increased availability of longitudinal data, dynamic panel data models have become commonplace. Moreover, the properties of various estimators of such models are well known. However, we show that these estimators breakdown when the data are irregularly spaced along the time dimension. Unfortunately, this is an increasingly frequent occurrence as many longitudinal surveys are collected at non-uniform intervals and no solution is currently available when time-varying covariates are included in the model. In this paper, we propose several new estimators for dynamic panel data models when data are irregularly spaced and compare their finite sample performance to the naïve application of existing estimators. We illustrate the practical importance of this issue by turning to two applications on early childhood development.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.