published in: Journal of Econometrics, 2021, 221, 43-67
We examine a new general class of hazard rate models for survival data, containing a parametric and a nonparametric component. Both can be a mix of a time effect and (possibly time-dependent) marker or covariate effects. A number of well-known models are special cases. In a counting process framework, a general profile likelihood estimator is developed and the parametric component of the model is shown to be asymptotically normal and efficient. The analysis improves on earlier results for special cases. Finite sample properties are investigated in simulations.
The estimator is shown to work well under realistic empirical conditions. The estimator is applied to investigate the long-run relationship between birth weight and later-life mortality using data from the Uppsala Birth Cohort Study of individuals born in 1915-1929. The results suggest a relationship that is difficult to capture with simple parametric specifications. Moreover, its shape at higher birth weights differs across gender.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.