This article presents identification results for the marginal treatment effect (MTE) when there is sample selection. We show that the MTE is partially identified for individuals who are always observed regardless of treatment, and derive uniformly sharp bounds on this parameter under three increasingly restrictive sets of assumptions. The first result imposes standard MTE assumptions with an unrestricted sample selection mechanism. The second set of conditions imposes monotonicity of the sample selection variable with respect to treatment, considerably shrinking the identified set. Finally, we incorporate a stochastic dominance assumption which tightens the lower bound for the MTE. Our analysis extends to discrete instruments. The results rely on a mixture reformulation of the problem where the mixture weights are identified, extending Lee's (2009) trimming procedure to the MTE context. We propose estimators for the bounds derived and use data made available by Deb, Munkin, and Trivedi (2006) to empirically illustrate the usefulness of our approach.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.