published in: Journal of Labor Economics, 2006, 24 (3), 483-519
This paper examines alternative forms of match bias arising from earnings imputation. Wage equation parameters are estimated based on mixed samples of workers who do and do not report earnings, the latter group being assigned earnings of donors who share some but not all the attributes of the recipients. Regressions that include attributes not used as imputation match criteria (e.g., union status) are severely biased. Related forms of match bias arise with respect to attributes used as match criteria, but matched imperfectly. For example, an imperfect match on schooling creates bias that flattens estimated earnings profiles within low, middle, and high education groups, while creating large jumps in returns across groups. The same pattern arises in wage-age profiles. The paper provides a general analytic expression to correct match bias in regression coefficients under the assumption of conditional mean missing at random. The full sample correction approach is compared to the alternative of omitting imputed earners from the sample, with and without reweighting. Additional problems considered are bias in longitudinal analysis and the presence of dated donors.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.