IZA DP No. 4935: A Parametric Control Function Approach to Estimating the Returns to Schooling in the Absence of Exclusion Restrictions: An Application to the NLSY
published in: Empirical Economics, 2013, 44 (1), 111-133
An innovation which bypasses the need for instruments when estimating endogenous treatment effects is identification via conditional second moments. The most general of these approaches is Klein and Vella (2010) which models the conditional variances semiparametrically. While this is attractive, as identification is not reliant on parametric assumptions for variances, the non-parametric aspect of the estimation may discourage practitioners from its use. This paper outlines how the estimator can be implemented parametrically. The use of parametric assumptions is accompanied by a large reduction in computational and programming demands. We illustrate the approach by estimating the return to education using a sample drawn from the National Longitudinal Survey of Youth 1979. Accounting for endogeneity increases the estimate of the return to education from 6.8% to 11.2%.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.