published in: Econometric Reviews, 2019, 38 (2), 193-207
This paper assesses the performance of common estimators adjusting for differences in covariates, such as matching and regression, when faced with so-called common support problems. It also shows how different procedures suggested in the literature affect the properties of such estimators. Based on an Empirical Monte Carlo simulation design, a lack of common support is found to increase the root mean squared error (RMSE) of all investigated parametric and semiparametric estimators. Dropping observations that are off support usually improves their performance, although the magnitude of the improvement depends on the particular method used.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.