pusblished in: Journal of Business and Economic Statistics, 2021, 39 (2), 422 - 436
This paper suggests a causal framework for disentangling individual level treatment effects and interference effects, i.e., general equilibrium, spillover, or interaction effects related to treatment distribution. Thus, the framework allows for a relaxation of the Stable Unit Treatment Value Assumption (SUTVA), which assumes away any form of treatment-dependent interference between study participants. Instead, we permit interference effects within aggregate units, for example, regions or local labor markets, but need to rule out interference effects between these aggregate units.
Borrowing notation from the causal mediation literature, we define a range of policy-relevant effects and formally discuss identification based on randomization, selection on observables, and difference-in-differences. We also present an application to a policy intervention extending unemployment benefit durations in selected regions of Austria that arguably affected ineligibles in treated regions through general equilibrium effects in local labor markets.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.