published in: German Economic Review, 2019, 20, e831-e851
In absence of randomized controlled experiments, identification is often aimed via instrumental variable (IV) strategies, typically two-stage least squares estimations. According to Bayes' rule, however, under a low ex ante probability that a hypothesis is true (e.g. that an excluded instrument is partially correlated with an endogenous regressor), the interpretation of the estimation results may be fundamentally flawed. This paper argues that rigorous theoretical reasoning is key to design credible identification strategies, aforemost finding candidates for valid instruments. We discuss prominent IV analyses from the macro-development literature to illustrate the potential benefit of structurally derived IV approaches.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.