We propose and implement a new method to estimate treatment effects in settings where individuals need to be in a certain state (e.g. unemployment) to be eligible for a treatment, treatments may commence at different points in time, and the outcome of interest is realized after the individual left the initial state. An example concerns the effect of training on earnings in subsequent employment. Any evaluation needs to take into account that some of those who are not trained at a certain time in unemployment will leave unemployment before training while others will be trained later.
We are interested in effects of the treatment at a certain elapsed duration compared to "no treatment at any subsequent duration". We prove identification under unconfoundedness and propose inverse probability weighting estimators. A key feature is that weights given to outcome observations of non-treated depend on the remaining time in the initial state. We study earnings effects of WIA training in the US and long-run effects of a training program for unemployed workers in Sweden. Estimates are positive and sizeable, exceeding those obtained by using common static methods, and suggesting a reappraisal of training.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.