Governments worldwide are adopting nuanced policy measures to reduce the number of Covid-19 cases with minimal social and economic costs. Epidemiological models have a hard time predicting the effects of such fine grained policies. We propose a novel simulation-based model to address this shortcoming. We build on state-of-the-art agent-based simulation models but replace the way contacts between susceptible and infected people take place. Firstly, we allow for heterogeneity in the types of contacts (e.g. recurrent or random) and in the infectiousness of each contact type.
Secondly, we strictly separate the number of contacts from the probabilities that a contact leads to an infection. The number of contacts changes with social distancing policies, the infection probabilities remain invariant. This allows us to model many types of fine grained policies that cannot easily be incorporated into other models. To validate our model, we show that it can accurately predict the effect of the German November lockdown even if no similar policy has been observed in the time series that were used to estimate the model parameters.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.