Survey data on household consumption are often unavailable or incomparable over time in many low- and middle-income countries. Based on a unique randomized survey experiment implemented in Tanzania, this study offers new and rigorous evidence demonstrating that survey-to-survey imputation can fill consumption data gaps and provide low-cost and reliable poverty estimates. Basic imputation models featuring utility expenditures, together with a modest set of predictors on demographics, employment, household assets and housing, yield accurate predictions. Imputation accuracy is robust to varying survey questionnaire length; the choice of base surveys for estimating the imputation model; different poverty lines; and alternative (quarterly or monthly) CPI deflators. The proposed approach to imputation also performs better than multiple imputation and a range of machine learning techniques. In the case of a target survey with modified (e.g., shortened or aggregated) food or non-food consumption modules, imputation models including food or non-food consumption as predictors do well only if the distributions of the predictors are standardized vis-à-vis the base survey. For best-performing models to reach acceptable levels of accuracy, the minimum-required sample size should be 1,000 for both base and target surveys. The discussion expands on the implications of the findings for the design of future surveys.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.