published in: Journal of Population Economics, 2009, 22 (2), 463 - 499
We address the bias from using potential vs. actual experience in earnings models. Statistical tests reject the classical errors-in-variable framework. The nature of the measurement error is best viewed as a model misspecification problem. We correct for this by modeling actual experience as a stochastic regressor and predicting experience using the NLSY79 and the PSID. Predicted experience measures are applied to the IPUMS. Our results suggest that potential experience biases the effects of schooling and the rates of return to labor market experience. Using such a measure in earnings models underestimates the explained portion of the male-female wage gap.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.