published in: Journal of Applied Econometrics, 2009, 24 (5), 735–762
This paper formulates a likelihood-based estimator for a double index, semiparametric binary response equation. A novel feature of this estimator is that it is based on density estimation under local smoothing. While the proofs differ from those based on alternative density estimators, the finite sample performance of the estimator is significantly improved. As binary responses often appear as endogenous regressors in continuous outcome equations, we also develop an optimal instrumental variables estimator in this context. For this purpose, we specialize the double index model for binary response to one with heteroscedasticity that depends on an index different from that underlying the “mean-response”. We show that such (multiplicative) heteroscedasticity, whose form is not parametrically specified, effectively induces exclusion restrictions on the outcomes equation. The estimator developed below exploits such identifying information. We provide simulation evidence on the favorable performance of the estimators and illustrate their use through an empirical application on the determinants, and affect, of attendance at a government financed school.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.