published in: H. Engelhardt, H.-P. Kohler and A. Fürnkranz-Prskawetz (eds.), Causal Analysis in Population Studies: Concepts, Methods, Applications, Springer-Verlag: 2009, 111-148
In this article we propose and implement an instrumental variable estimation procedure to obtain treatment effects on duration outcomes. The method can handle the typical complications that arise with duration data of time-varying treatment and censoring. The treatment effect we define is in terms of shifting the quantiles of the outcome distribution based on the Generalized Accelerated Failure Time (GAFT) model. The GAFT model encompasses two competing approaches to duration data; the (Mixed) Proportional Hazard (MPH) model and the Accelerated Failure Time (AFT) model. We discuss the large sample properties of the proposed Instrumental Variable Linear Rank (IVLR), and show how we can, with one additional step, improve upon its efficiency. We discuss the empirical implementation of the estimator and apply it to the Illinois re-employment bonus experiment.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.