revised version published in: Health Economics, 2011, 20 (9), 1090-1109
In this paper we propose an estimator for models in which an endogenous dichotomous treatment affects a count outcome in the presence of either sample selection or endogenous participation using maximum simulated likelihood. We allow for the treatment to have an effect on both the sample selection or the participation rule and the main outcome. Applications of this model are frequent in – but are not limited to – health economics. We show an application of the model using data from Kenkel and Terza (2001), who investigate the effect of physician advice on the amount of alcohol consumption. Our estimates suggest that in these data (i) neglecting treatment endogeneity leads to a wrongly signed effect of physician advice on drinking intensity, (ii) neglecting endogenous participation leads to an upward biased estimate of the treatment effect of physician advice on drinking intensity.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.