published as 'Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity' in: Journal of Econometrics, 2015, 188 (1), 111-134
This paper extends the transformed maximum likelihood approach for estimation of dynamic panel data models by Hsiao, Pesaran, and Tahmiscioglu (2002) to the case where the errors are crosssectionally heteroskedastic. This extension is not trivial due to the incidental parameters problem that arises, and its implications for estimation and inference. We approach the problem by working with a mis-specified homoskedastic model. It is shown that the transformed maximum likelihood estimator continues to be consistent even in the presence of cross-sectional heteroskedasticity. We also obtain standard errors that are robust to cross-sectional heteroskedasticity of unknown form. By means of Monte Carlo simulation, we investigate the finite sample behavior of the transformed maximum likelihood estimator and compare it with various GMM estimators proposed in the literature. Simulation results reveal that, in terms of median absolute errors and accuracy of inference, the transformed likelihood estimator outperforms the GMM estimators in almost all cases.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.