The study investigates whether and how strong prison conditions contribute to the perceived propensity to recidivate after controlling for personal characteristics and criminal background. In order to combine different sources of information on personal characteristics of prison inmates and administrative prison data in an efficient way, we propose the use of matched prison-prisoner data and application of cluster-sample methods such as GEE (generalized estimating equations). Estimated average partial effects based on GEE and random-effects Probit modeling reveal that prison conditions show significant effects on the perceived likelihood of future reincarceration. Particularly, we find that inmates facing prison overcrowding show a reduced likelihood of recidivism.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.