published in: European Economic Review, 2022, 144, 104079
Detecting racial discrimination using observational data is challenging because of the presence of unobservables that may be correlated with race. Using data made public in the SFFA v. Harvard case, we estimate discrimination in a setting where this concern is mitigated. Namely, we show that there is a substantial penalty against Asian Americans in admissions with limited scope for omitted variables to overturn the result. This is because (i) Asian Americans are substantially stronger than whites on the observables associated with admissions and (ii) the richness of the data yields a model that predicts admissions extremely well. Our preferred model shows that Asian Americans would be admitted at a rate 19% higher absent this penalty. Controlling for one of the primary channels through which Asian American applicants are discriminated against — the personal rating — cuts the Asian American penalty by less than half, still leaving a substantial penalty.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.